Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Retrieval methods are a powerful analysis technique for modelling exoplanetary atmospheres by estimating the bulk physical and chemical properties that combine in a forward model to best fit an observed spectrum, and they are increasingly being applied to observations of directly imaged exoplanets. We have adapted taurex3, the Bayesian retrieval suite, for the analysis of near-infrared spectrophotometry from directly imaged gas giant exoplanets and brown dwarfs. We demonstrate taurex3’s applicability to sub-stellar atmospheres by presenting results for brown dwarf benchmark GJ 570D which are consistent with previous retrieval studies, whilst also exhibiting systematic biases associated with the presence of alkali lines. We also present results for the cool exoplanet 51 Eri b, the first application of a free chemistry retrieval analysis to this object, using spectroscopic observations from GPI and SPHERE. While our retrieval analysis is able to explain spectroscopic and photometric observations without employing cloud extinction, we conclude this may be a result of employing a flexible temperature-pressure profile which is able to mimic the presence of clouds. We present Bayesian evidence for an ammonia detection with a 2.7σ confidence, the first indication of ammonia in a directly imaged exoplanetary atmosphere. This is consistent with this molecule being present in brown dwarfs of a similar spectral type. We demonstrate the chemical similarities between 51 Eri b and GJ 570D in relation to their retrieved molecular abundances. Finally, we show that overall retrieval conclusions for 51 Eri b can vary when employing different spectral data and modelling components, such as temperature–pressure and cloud structures.more » « less
-
Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detect (3.7σsignificance) in the companion’s atmosphere and measure and after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure and for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types.more » « less
An official website of the United States government
